....do.what.you.want...showwww meeeehhhhh cowwwwwww

This is the place where u may do whatever u like :-)
Post Reply
User avatar
cleopatra
Posts: 744
https://www.facebook.com/warszawa.kuchnie.na.wymiar/
Joined: Fri May 12, 2006 9:31 pm
Location: Nederland,Kosova

....do.what.you.want...showwww meeeehhhhh cowwwwwww

Post by cleopatra »

...
Last edited by cleopatra on Sun Oct 28, 2007 10:12 pm, edited 1 time in total.
User avatar
}TCP{Cee
Posts: 4233
Joined: Fri Dec 20, 2002 6:01 pm
Location: Germany

Post by }TCP{Cee »

geg.: A(-1|12), B(2|15), C(5|-18)
ges.: a, b, c ÎÂ, so daß A, B und C auf y = ax² + bx + c liegen

Setze die Koordinaten von A in die Funktion ein: 12 = a·(-1)² + b·(-1) + c
= a - b + c

" - " - " B " - " 15 = a·2² + b·2 + c
= 4a + 2b + c

" - " - " C " - " -18 = a·5² + b·5 + c
= 25a + 5b + c

a - b + c = 12
4a + 2b + c = 15 -4·I
25a + 5b + c = -18 -25·I


a - b + c = 12
6b - 3c = -33 :6
30b - 24c = -318


a - b + c = 12 +II
b - 0,5c = -5,5
30b - 24c = -318 -30·II


a + 0,5c = 6,5
b - 0,5c = -5,5
-9c = -153 :(-9)


a + 0,5c = 6,5 -0,5·III
b - 0,5c = -5,5 +0,5·III
c = 17


a = -2
b = 3
c = 17


Ergibt: f(x) = -2x² + 3x + 17

Probe für Punkt A: -2·(-1)² + 3·(-1) + 17 = -2 - 3 + 17 = 12 OK
B: -2·2² + 3·2 + 17 = -8 + 6 + 17 = 15 OK
C: -2·5² + 3·5 + 17 = -50 + 15 + 17 = -18 OK

Löst man das Gleichungssystem für den allgemeinen Fall, also für die Punkte P1(x1|y1), P2(x2|y2) und P3(x3|y3), so erhält man eine Formel für die Koeffizienten:

x1²a + x1b + c = y1 :x1²
x2²a + x2b + c = y2
x3²a + x3b + c = y3


a + x1/x1²·b + 1/x1²·c = y1/x1²
x2²·a + x2·b + c = y2 -x2²·I
x3²·a + x3·b + c = y3 -x3²·I


a + 1/x1·b + 1/x1²·c = y1/x1²
(x2-x2²/x1)·b + (1-x2²/x1²)·c = y2-x2²y1/x1²
(x3-x3²/x1)·b + (1-x3²/x1²)·c = y3-x3²y1/x1²


a + 1/x1·b + 1/x1²·c = y1/x1²
(x1x2-x2²)/x1·b + (x1²-x2²)/x1²·c = (x1²y2-x2²y1)/x1² ·(x1/(x1x2-x2²)
(x1x3-x3²)/x1·b + (x1²-x3²)/x1²·c = (x1²y3-x3²y1)/x1²


a + 1/x1·b + 1/x1²·c = y1/x1² -1/x1·II
b + (x1²-x2²)/(x1²x2-x1x2²)·c = (x1²y2-x2²y1)/(x1²x2-x1x2²)
(x1x3-x3²)/x1·b + (x1²-x3²)/x1²·c = (x1²y3-x3²y1)/x1² -(x1x3-x3²)/x1·II



usw.


a = (x1(y2-y3)+x2(y3-y1)+x3(y1-y2))/((x1-x2)(x1-x3)(x3-x2))
b = (x1²(y2-y3)+x2²(y3-y1)+x3²(y1-y2))/((x1-x2)(x1-x3)(x2-x3))
c = (x1²(x2y3-x3y2)+x1(x3²y2-x2²y3)+x2x3y1(x2-x3))/((x1-x2)(x1-x3)(x2-x3))



Mit den so gewonnenen Koeffizienten a, b und c stellt sich die Formel für die x-Koordinate des Scheitelpunktes (siehe ®hier) so dar:

xS = (x2²(y3 - y1) - x1²(y3 - y2) - x3²(y2 - y1))/(2(x2(y3 - y1) - x1(y3 - y2) - x3(y2 - y1)))

Mit ihr ist es möglich, aufgrund dreier Punkte einer Parabel die Stelle ihres Extremwerts (=Scheitelpunkt) direkt zu berechnen.

Ist der Abstand der x-Werte konstant d, und gilt x1+d=x2=x3-d, so reduziert sich dies zu:
xS = x2 + d/2·(y3 - y1)/(2y2 - y1 - y3)

Beispiel: P1(-4|-2), P2(1|10), P3(6|7), also ist d=5, und xS = x2 + d/2·(y3 - y1)/(2y2 - y1 - y3) = 1 + 2,5·(7 - (-2))/(20 - (-2) - 7) = 1 + 2,5·9/15 = 2,5

and thats how u find a parabola through 3 points, which is so totally on topic :O
Taz
Posts: 2848
Joined: Wed Sep 24, 2003 3:29 pm

Post by Taz »

Holy moly :O
Delete this account pls
Posts: 423
Joined: Sat Oct 28, 2006 12:54 pm

Post by Delete this account pls »

*burp*
*[youtube]http://www.youtube.com/watch?v=1dKTklVzFRQ[/youtube]*
*[youtube]http://www.youtube.com/watch?v=Yo0mr4mrQWw[/youtube]*
wow big burp
excuse me :P
User avatar
}TCP{Kerm
Posts: 807
Joined: Sat Nov 11, 2006 10:45 pm

Post by }TCP{Kerm »

I know this is the section spam but this topic doesnt even have a subject or am I just that stupid :roll:
Image
User avatar
cleopatra
Posts: 744
Joined: Fri May 12, 2006 9:31 pm
Location: Nederland,Kosova

Post by cleopatra »

wooow Cee

Einstein
×÷·.·´¯`·)»}TCP{māģĭς«(·´¯`·.·÷×

ÇâřŅàĠξ, Ẅöľדּ, ŔÄMşÃ¨ŝ, Ĉếẹ, ζżςÃ¥ţ, қĨŀļểг, ĈҺĔŜҢÃŒřẽ, Ţ@ζ, vâń, şņÕŵβįЯđ, ςőċŌ, ÝξŀļÔψ, ğĦǿ∫Ŧ, Å ỀИťїς, ŤЯãŃ₪ŪÍĺĺŦỸ, ŚҝĂяĭפֿ§ċðūţ, ģĹëňҒїĎđÃŒĈҺ, ҒêÁЯ^, ¤Shð≥^..
ċŐÞҰгĭĞŋ‡© 2008
User avatar
Muh
Posts: 327
Joined: Wed Sep 06, 2006 2:18 am

Post by Muh »

lol cee :O
Post Reply